711 research outputs found

    An Analysis of the Problem of Relaxation When Singing

    Get PDF

    Generic Tubelet Proposals for Action Localization

    Full text link
    We develop a novel framework for action localization in videos. We propose the Tube Proposal Network (TPN), which can generate generic, class-independent, video-level tubelet proposals in videos. The generated tubelet proposals can be utilized in various video analysis tasks, including recognizing and localizing actions in videos. In particular, we integrate these generic tubelet proposals into a unified temporal deep network for action classification. Compared with other methods, our generic tubelet proposal method is accurate, general, and is fully differentiable under a smoothL1 loss function. We demonstrate the performance of our algorithm on the standard UCF-Sports, J-HMDB21, and UCF-101 datasets. Our class-independent TPN outperforms other tubelet generation methods, and our unified temporal deep network achieves state-of-the-art localization results on all three datasets

    Generation of large-bandwidth x-ray free electron laser with Evolutionary Many-Objective Optimization Algorithm

    Full text link
    X-ray free-electron lasers (XFELs) are cutting-edge scientific instruments for a wide range of disciplines. Conventionally, the narrow bandwidth is pursued in an XFEL. However, in recent years, the large-bandwidth XFEL operation schemes are proposed for X-ray spectroscopy and X-ray crystallography, in which over-compression is a promising scheme to produce broad-bandwidth XFEL pulses through increasing the electron beam energy chirp. In this paper, combining with the beam yaw correction to overcome the transverse slice misalignment caused by the coherent synchrotron radiation, finding out the over-compression working point of the linac is treated as a many-objective (having four or more objectives) optimization problem, thus the non-dominated sorting genetic algorithm III is applied to the beam dynamic optimization for the first time. Start-to-end simulations demonstrate a full bandwidth of 4.6% for Shanghai soft x-ray free-electron laser user facility

    High brightness fully coherent X-ray amplifier seeded by a free-electron laser oscillator

    Full text link
    X-ray free-electron laser oscillator (XFELO) is expected to be a cutting edge tool for fully coherent X-ray laser generation, and undulator taper technique is well-known for considerably increasing the efficiency of free-electron lasers (FELs). In order to combine the advantages of these two schemes, FEL amplifier seeded by XFELO is proposed by simply using a chirped electron beam. With the right choice of the beam parameters, the bunch tail is within the gain bandwidth of XFELO, and lase to saturation, which will be served as a seeding for further amplification. Meanwhile, the bunch head which is outside the gain bandwidth of XFELO, is preserved and used in the following FEL amplifier. It is found that the natural "double-horn" beam current as well as residual energy chirp from chicane compressor are quite suitable for the new scheme. Inheriting the advantages from XFELO seeding and undulator tapering, it is feasible to generate nearly terawatt level, fully coherent X-ray pulses with unprecedented shot-to-shot stability, which might open up new scientific opportunities in various research fields.Comment: 8 pages, 8 figure

    Self-enhanced coherent harmonic amplification in seeded free-electron lasers

    Full text link
    High-intensity, ultrashort, fully coherent X-ray pulses hold great potential for advancing spectroscopic techniques to unprecedented levels. Here, we propose a novel scheme for generating high-brightness and femtosecond-scale soft X-ray radiation within a seeded free-electron laser (FEL) operating at an MHz repetition rate. This scheme relies on the principles of self-modulation and superradiance. A relatively weak energy modulation of the pre-bunched electron beam is significantly amplified by the coherent radiation emitted in the self-modulator. Consequently, a coherent signal at ultra-high harmonics of the seed is achieved, and this signal is further amplified in the subsequent radiator through the fresh bunch and superradiant processes. Based on the parameters of the Shanghai soft X-ray FEL facility, three-dimensional simulations have been performed. The simulation results demonstrate that an electron beam with a laser-induced energy modulation as small as 2.3 times the slice energy spread can generate ultrashort coherent radiation pulses of around 2 GW within the water window spectral range. Moreover, the experimental results demonstrate that self-enhanced coherent energy modulation enables the production of coherent signals up to the 15th harmonic of a 266-nm seed laser. These findings indicate that the proposed scheme can facilitate the generation of high-repetition-rate seeded FEL.Comment: 10 pages, 9 figure

    SRDA: An Efficient Algorithm for Large-Scale Discriminant Analysis

    Full text link
    • …
    corecore